CISC 7700X Final Exam 1. b 2. 1 # ( (1 + 0.25) + (1 + 0.25) + (1 -0.50)) / 3 = 1, or 0% net-return. 3. 0.9210 # (1.25 * 1.25 * 0.50)^(1/3) 4. b 5. c 6. b 7. b # we found a random widget, there is a 50% chance that the serial number 1234 is within the interquartile range of all serial numbers. 8. d 9. e #invalid; p(x,y)=p(x|y)p(y)=p(y|x)p(x) 10. c 11. b 12. a 13. c 14. 0.6400 Given: P(Leave) = 0.1, P(-Leave) = 0.9; P(Leave|Promote) = P(Promote|Leave) P(Leave) / P(Promote) P(Leave|Promote) = P(Promote|Leave) P(Leave) / (P(Promote|Leave) P(Leave) + P(Promote|-Leave) P(-Leave) ) = (0.8 * 0.1) / (0.8 * 0.1 + 0.05 * 0.9) = 0.6400 15. 0.068966 Given: P(Leave) = 0.1, P(-Leave) = 0.9; P(Leave|Lt5years) = P(Lt5years|Leave) P(Leave) / P(Lt5years) P(Leave|Lt5years) = P(Lt5years|Leave) P(Leave) / ( P(Lt5years|Leave) P(Leave) + P(Lt5years|-Leave) P(-Leave) ) = (0.6 * 0.1) / ( 0.6 * 0.1 + 0.9 * 0.9) = 0.068966 16. no answer: we need P(Leave|Lt5years,Promote) = P(Lt5years,Promote|Leave) P(Leave) / P(Lt5years,Promote) we don't know P(Lt5years,Promote|Leave) or P(Lt5years,Promote) 17. 0.5424 P(Leave|Lt5years,Promote) = P(Lt5years,Promote|Leave) P(Leave) / P(Lt5years,Promote) Naive bayes: P(Leave|Lt5years,Promote) = P(Lt5years|Leave)P(Promote|Leave) P(Leave) / P(Lt5years)P(Promote) marginalize: P(Lt5years|Leave)P(Promote|Leave) P(Leave) / (P(Lt5years|Leave)P(Promote|Leave) P(Leave) + P(Lt5years|-Leave)P(Promote|-Leave) P(-Leave))) = 0.6* 0.8 * 0.1 / ( 0.6* 0.8 * 0.1 + 0.9*0.05*0.9) = 0.5424 18. d 19. c 20. 0.64952 # exp( 3*( 0.5*log(1+0.5)+0.5*log(1-0.5)) ) =0.64952