
Lisp / Scheme

Alex S.∗

1 Lisp

In the late 1950s, John McCarthy (the same one who coined the term “Artificial Intelli-
gence”), created a programming language named Lisp—which stands for “list processing”
(it also stands for “Lots of Irritating Superfluous Parentheses”).

1.1 Scheme

Modern Lisp, or “Common Lisp” is a rich and bloated language with all sorts of thingies.
Scheme is a rather simplified subset of the language. Most things we discuss here apply to
both Scheme and Lisp.

There’s a yet simpler Lisp subset called ‘Stutter’; which is a great place to start learning
Lisp.

2 The Language

In Lisp, you program by writing expressions. An exrepssion is either a list or an atom. An
atom is simply a string, or a number (like glah, blah, 123). A list is closed by parenthesis,
ie: (a b c). An empty list is written as () or nil.

A function call is represented as a list. (f b c) is a function f being called with argu-
ments a and b.

2.1 Interpreter

You can just type an expression and have it evaluated, ie:

> ’blah

BLAH

> ’glah

GLAH

∗alex@theparticle.com

1



2.2 Lists 2 THE LANGUAGE

> (+ 5 7)

12

> (set ’glah ’blah)

BLAH

> glah

BLAH

> (set ’ten ’10)

10

> (* 3.14 ten)

31.400002

2.2 Lists

You can operate on lists via the car and cdr functions. The car returns the first element
of the list, while cdr returns the tail. For example:

> (car ’(a b c))

A

> (cdr ’(a b c))

(B C)

You can of course have lists that are sublists of other lists. For example:

> (car ’((a b c) (d e f) (g h i)))

(A B C)

> (cdr ’((a b c) (d e f) (g h i)))

((D E F) (G H I))

Another very useful function is to construct a list out of the head and tail. cons does
that.

> (cons ’a nil)

(A)

> (cons ’a ’(b c))

(A B C)

> (cons ’(A B C) ’((D E F) (G H I)))

((A B C) (D E F) (G H I))

2.3 Conditionals

There is a familiar if function, that works like this:

(if ’condition ’if-true-expression ’else-expression)

For example:

2



2.4 Lambda Expressions 3 EXAMPLES

> (set ’pi 3.14)

3.14

> (set ’b (* 2 pi))

6.28

> (if (< pi b) ’pi-less-than ’pi-greater-than)

PI-LESS-THAN

2.4 Lambda Expressions

Lambda expressions are basically functions without a name. The form is:

(lambda (arg1 arg2) (function body))

In other words, a function that increments a value might look like this:

(lambda (x) (+ x 1))

To try it out, we just need to ‘use it’, ie:

> ((lambda (x) (+ x 1)) 12345)

12346

2.5 Functions

You can define a function via defun.

> (defun increment (x) (+ x 1))

INCREMENT

> (increment 123)

124

3 Examples

3.1 Factorial

Factorial can be written like this:

(defun factorial (n)

(if (<= n 1)

1

(* n (factorial (- n 1)))))

The cool thing about Lisp is that all arithmetics are exact. For example, if you do:

(factorial 1000)

It will actually display the full answer.

3


